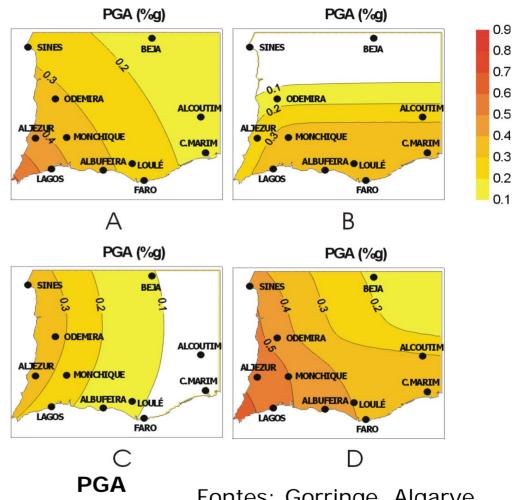


ABORDAGEM PROBABILISTA

Métodos probabilistas → vantagem de permitirem associar um nível de probabilidade aos valores dos parâmetros usados para caracterizar o movimento vibratório do terreno em cada sítio considerado.

- Perspectiva probabilista:
 - movimentos do solo → usualmente expressos pela aceleração das vibrações sísmicas expectáveis;
 - perigo sísmico (Hx) → probabilidade de a aceleração máxima do solo no local (Ax) exceder um valor de referência da aceleração (Ar), num intervalo de tempo (t):


perigo sísmico no local x Hx = P(Ax > Ar) t

MAPAS DE PERIGOSIDADE SÍSMICA

➤ Mapas de
 perigosidade →
 isolinhas de um
 parâmetro das
 vibrações sísmicas (p.

ex. aceleração) para:

uma probabilidade
 de excedência num
 dado intervalo de
 tempo.

5% de probabilidade de excedência em 200 anos.

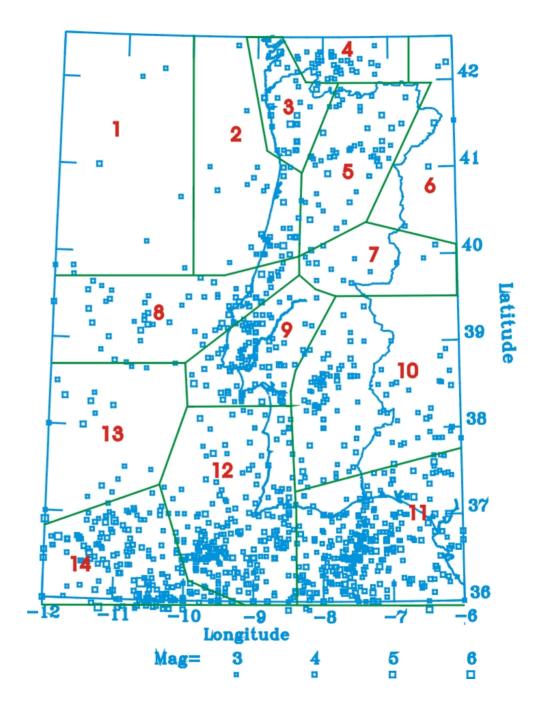
Fontes: Gorringe, Algarve, Margem Alentejana e as 3 zonas em simultâneo

P. Teves Costa (2001)

ABORDAGEM PROBABILISTA

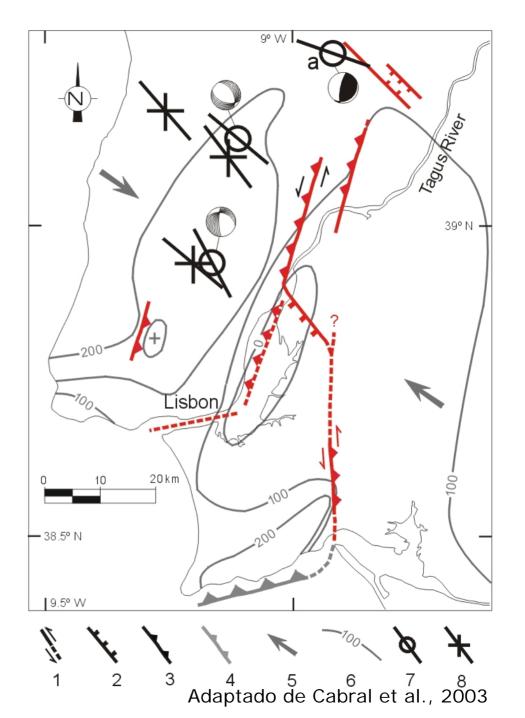
- Outro modo de quantificar a perigosidade sísmica:
 - probabilidade anual de ocorrência,
 ou o inverso período de retorno, de
 um dado nível de movimento do solo
 (aceleração, velocidade ou deslocamento).

CONSTRUÇÃO DO MODELO DE PERIGOSIDADE SÍSMICA

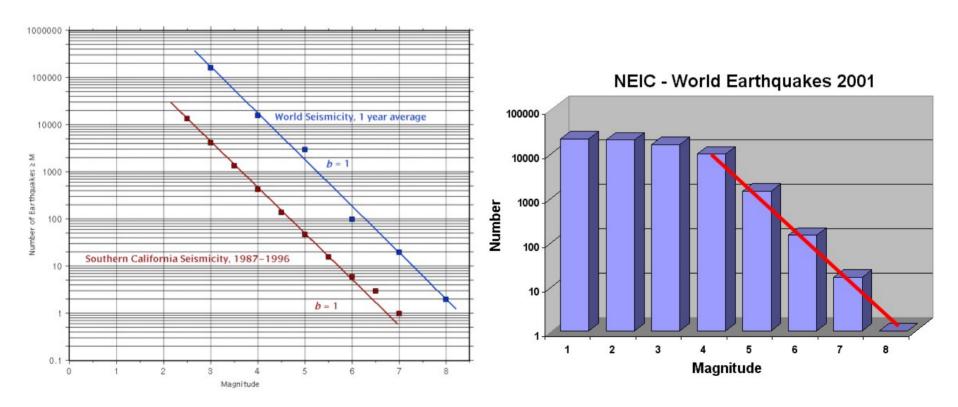

- Avaliação da perigosidade sísmica ⇒ modelo de sismicidade ↔ "base de dados" dos sismos e fontes
 - identificação das fontes sismogénicas —
 falhas activas ou zonas sismogénicas
 (províncias sismotectónicas);
 - caracterização da respectiva actividade sísmica
 ⇔ modelos de recorrência relação de
 Gutenberg-Richter (log N(M) = loga bM) →
 intervalo de recorrência médio (v_M);
 - 3) modelo estatístico probabilidade de ocorrência no tempo (para M_i) → distribuição de Poisson;
 - lei de atenuação → estimativa de acelerações no sítio;
 - ⇒ Modelo de Perigosidade Sísmica

CONSTRUÇÃO DO MODELO DE PERIGOSIDADE SÍSMICA

- 1) identificação das fontes sismogénicas
 - estruturas geológicas (falhas activas) e/ou
 - zonas sismogénicas (definidas com base na sismicidade e estruturas regionais).


ZONAS SISMOGÉNICAS -EXEMPLO

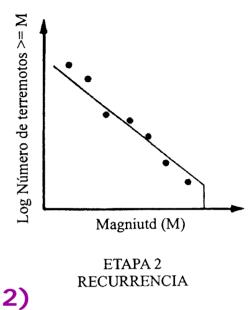
Projecto "Estudo do Risco Sísmico na Área Metropolitana de Lisboa e Concelhos Limítrofes" (2000)

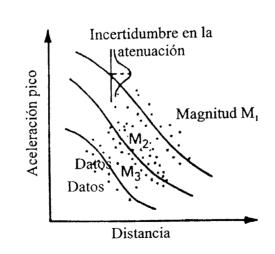

MAPA DE FALHAS ACTIVAS - EXEMPLO

Região do ValeInferior do Tejo

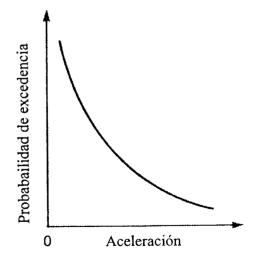
CONSTRUÇÃO DO MODELO DE PERIGOSIDADE SÍSMICA

2) caracterização da actividade sísmica das fontes sismogénicas — modelos de recorrência — relação de Gutenberg-Richter log [N(m≥M)] = loga – bM




MODELO DE PERIGOSIDADE SÍSMICA

- 1) **Fontes** sismogénicas
- Modelos de 2) recorrência
- Leis de atenuação
- A- Modelo de ocorrência no tempo (Poisson); B- Função de probabilidade acumulada



ETAPA 4 PROBABILIDAD DE **EXCEDENCIA**

M. V. Pérez (2002)

INTERVENÇÃO DA GEOLOGIA

- ▶ Para além da influência na atenuação das ondas sísmicas e nos efeitos de sítio, a Geologia – Neotectónica e Sismotectónica - intervem:
 - Na identificação e caracterização das fontes
 sismogénicas (falhas activas e zonas sismogénicas);
 - No aperfeiçoamento do modelo de sismicidade :
 - ✓ ampliando a escala cronológica dos registos para o tempo geológico ↔ Paleosismicidade;
 - ✓ melhorando o modelo de recorrência
 - ✓ identificando os sismos máximos que as estruturas activas presentes têm o potencial de gerar.

FALHAS ACTIVAS

- ➤ Avaliação da actividade das falhas → no âmbito de:
 - estudos aplicados à segurança de empreendimentos
 sensíveis, p. ex. centrais nucleares, barragens;
 - <u>estudos de risco sísmico</u> à escala <u>regional</u> (mais ou menos alargada):
 - ✓ planeamento urbano (microzonagem sísmica);
 - ✓ <u>inventariação de cenários</u> em caso de sismo e estabelecimento de <u>planos de emergência</u>.
- Em <u>estudos de perigosidade</u> → avalia-se <u>capacidade</u> das <u>falhas</u> para gerarem:
 - movimentos do solo (vibrações sísmicas) fortes, ou seja,
 sismos de magnitude elevada,
 - <u>ruptura superficial</u> (geralmente acompanhando sismos superficias de M>6).

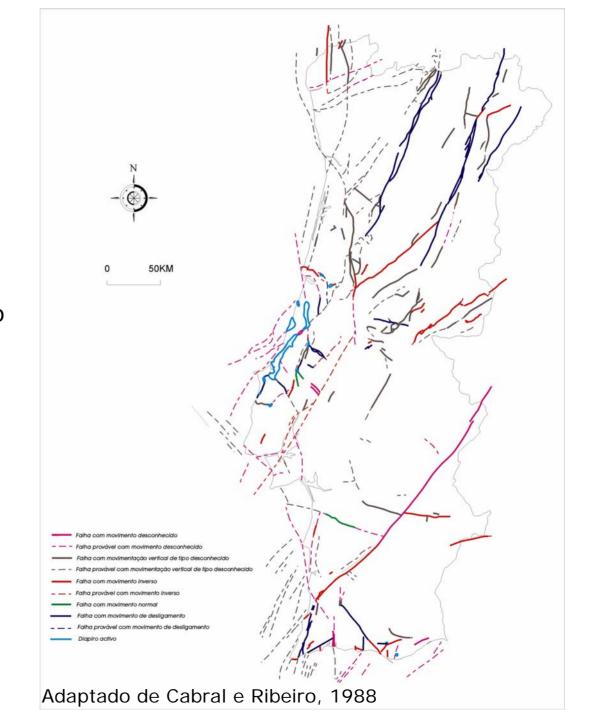
NOÇÃO DE FALHA ACTIVA

- > consideram-se activas:
 - falhas com evidências de <u>deslocamentos</u>
 <u>suficientemente recentes</u> para que seja <u>expectável</u> a <u>ocorrência</u> de <u>novos deslocamentos</u> durante o tempo de vida dos empreendimentos em causa, ou num futuro relativamente próximo (com impacto na comunidade).
- <u>estudo</u> das <u>falhas activas</u> enquadra-se nos <u>estudos</u> regionais de <u>Neotectónica</u>:
 - estudo das <u>deformações tectónicas</u> ocorridas desde o estabelecimento do <u>regime tectónico corrente</u> (ou vigente) na região.

CLASSIFICAÇÃO DICOTÓMICA DE ACTIVIDADE NAS FALHAS

- Existem numerosas definições de falha activa, sempre ligadas a uma dada <u>referência cronológica de</u> <u>observação</u>.
- Admitem-se geralmente <u>duas situações para cada</u> <u>falha</u>:
 - <u>activa</u> ou <u>inactiva</u> (ou <u>extinta</u>), com base na <u>idade</u>
 <u>dos últimos movimentos</u> identificados na falha.
- Considera-se, por vezes, a classificação de <u>falha</u>
 <u>potencialmente activa</u> e/ou de <u>falha não provada</u>:
 - falha com evidências de deslocamento relativamente recente (no Regime Tectónico Corrente, ou no Quaternário, p. ex.), mas para a qual não é possível aplicar objectivamente critérios de actividade.

FALHA CAPAZ


- ➤ Em estudos de neotectónica aplicados à segurança de centrais nucleares é norma recuar-se aos últimos 500.000 anos para a definição de falhas activas — neste caso denominadas falhas capazes:
- A capable fault is a fault, which has exhibited one or more of the following characteristics:
 - (1) Movement at or near the ground surface at least once within the past 35,000 years or movement of a recurring nature within the past 500,000 years.
 - (2) Macro-seismicity instrumentally determined with records of sufficient precision to demonstrate a direct relationship with the fault.
 - (3) A structural relationship to a capable fault according to characteristic
 - (1) or (2) of this paragraph such that movement on one could be reasonably expected to be accompanied by movement on the other.
- (U.S. Nuclear Regulatory Commission, Appendix A to Part 100 -- Seismic and Geologic Siting Criteria for Nuclear Power Plants, 1997)

FALHA ACTIVA – ESTADO DA CALIFÓRNIA

- ➤ No Estado da Califórnia, região de elevada actividade tectónica, utiliza-se a seguinte definição de <u>falha activa</u> para <u>zonamento sísmico</u> (*California State Mining and Geology Board Classification*, 1973, *in* Keller e Pinter, 2002):
 - <u>falha</u> apresentando evidências de movimentação na época holocénica (últimos 10.000 anos);
 - uma <u>falha</u> que se movimentou no período Quaternário é classificada como <u>potencialmente activa</u>, enquanto que as <u>falhas</u> que não se movimentaram no Quaternário (1,8 Ma) se designam <u>inactivas</u>.

MAPA NEOTECTÓNICO DE PORTUGAL CONTINENTAL

Critério de actividade abarcando período de tempo muito longo ≈ 2 Ma (aproximadamente o Quaternário)

MAPA NEOTECTÓNICO DE PORTUGAL CONTINENTAL

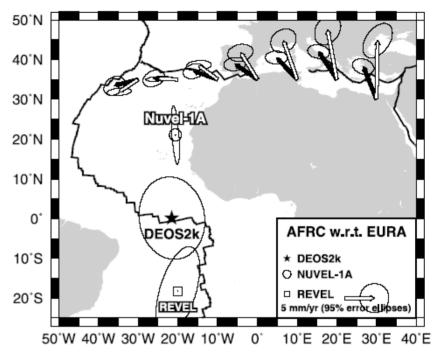
- ➤ <u>Critério de actividade</u> abarcando <u>período de tempo</u> muito longo <u>≈ 2 Ma</u> (aproximadamente o Quaternário):
 - trabalho elaborado parcialmente no âmbito de estudos de selecção de sítios para a instalação de centrais nucleares em Portugal;
 - percepção da ocorrência de taxas de actividade tectónica relativamente baixas;
 - fundamentado na transição para o Regime Tectónico
 Corrente passagem do Pliocénico superior ao Quaternário
 marcada por incremento da actividade tectónica e por levantamento regional generalizado, em resposta a uma modificação do campo da tensão:
 - ❖ com rotação da tensão compressiva máxima horizontal de NW-SE para WNW-ESE na área litoral.

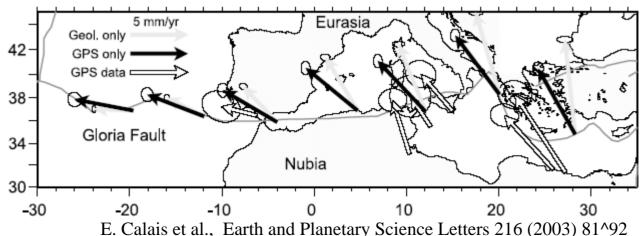
FALHAS ACTIVAS - PORTUGAL CONTINENTAL

- Portugal continental ciclo sísmico médio para sismos de M≥6,5 → estimado entre 5.000 e 200.000 anos:
 - período mínimo em que é expectável encontraremse evidências de falhamento activo no registo geológico superficial;
 - necessários cerca de <u>50.000</u> a <u>2.000.000 de anos</u>
 para acumular uma <u>rejeição</u> na <u>superfície</u>
 <u>topográfica</u> de cerca de <u>10 m</u>.

ENQUADRAMENTO GEODINÂMICO

- > Evolução geodinâmica
- → condicionada por:
 - localização no contexto das placas litosféricas;
 - interacção entre as
 placas →
- Convergência NW-SEIbéria África(4mm/ano)


P.A.Ib. **ESPANHA** P.A.T. AFRICA 100 km


Adaptado de Cabral, 1995

REGIME TECTÓNICO CORRENTE

- ➤ Evidências de geodesia de satélite (GPS) de modificação do movimento relativo das placas pós- 3 Ma
 - efeito instantâneo
 ou à escala geol. (Q)?

Fernandes et al, Geophysical Research Letters, vol. 30, no. 16, 2003

